

1st Annual PIP-CAP Meeting

Agenda:

- 1. Introduction Project and Slack groups (Mark)
- 2. Program Coordinator and budget overview (Lizeth)
- 2: Groups (Group Leaders)
- 3. CA Trip Summary (Mark and Ricardo)
- 4. Student and Postdoc Presentations

Sam Humphrey: Rooting plug plants from tips of different sizes Pooja Tripathy: Effect of artificial chilling treatment on vegetative growth and runnering of 'Albion' and 'Fronteras' strawberry propagation transplants

growth and runnening of Albion and Fronteras strawberry propagation transp

Xi Luo: Progress in identifying DNA variants associated with

runnering and flowering traits in strawberries

- 5. Adjourn and invite people to stay for the virtual meet and greet for students
- 6. Meet & Greet for Students, staff, post-docs and PIs (not mandatory)

Development and Integration of Next Generation Propagation Strategies to Increase the Resilience of The US Strawberry Supply Chain

USDA-NIFA Award: 2021-51181-35857 Budget: \$5,294,195

Mission:

Provide the industry with controlled environment protocols to <u>propagate</u> <u>strawberries</u>

Outcomes:

- Technology transfer: CE protocols to propagate strawberries.
- Fundamental knowledge on physiology, genetics, economics and supply chain.
- Building networks

Phase 1: Acquiring fundamental knowledge

Phase 2: Performance and technology transfer

Today:

- Introduction of groups
- A short summary of our stakeholder visit in June 2022
- Brief research updates
- Student/Post-Doc meet and greet

Questions?

- Can we develop similar practices for the US?
- Can we move things into completely enclosed environments?
- Chilling/Storing/Conditioning?

SLACK:

- Q&A Group
- Sharing science (interesting pubs/talks/videos)
- Share your strawberry swag (you want others to see/talk about your research?)
- Hobbies & Random

https://strawberries-pip.cals.ncsu.edu/

Thank You

mark.hoffmann@ncsu.edu

Program Coordinator for PIP-CAP

Education History

BS in Education from New Mexico State MS in Administration from Concordia University-Portland

Work History

Public Education for 14 Years

- High school teacher
- IEP Coordinator

NC State University with Dr. Mark Hoffmann

K. Lizeth Vigil

kvigil@ncsu.edu 575-993-8212

Budget Overview

Account	Name	Total Sub. Amount	1st Distribution Amount	PTD Avtivity	Balance Available
500023	US Davis	\$210,000	\$125,253	\$0.00	\$125,253
500024	Univ. of Florida	\$377,839	\$234,389	\$736.16	\$233,653
500034	Ohio	\$447,504	\$252,660	\$34,893.75	\$217,766
562798	Virginia	\$79,237	\$30,561	\$2,099.32	\$28,462
568230	Univ. of California	\$138,921	\$80,570	\$0.00	\$80,570
569154	Univ. of Maryland	\$500,000.00	\$306,122.00	\$36,186.97	\$269,935.03
569164	Cal Poly	\$217,517	\$153,660	\$0.00	\$153,660
569176	Cornell	\$179,990	\$105,123	\$6,611.58	\$98,511
569201	Rutgers	\$335,000.00	\$207,859.00	\$12,452.61	\$195,406.39
569206	USDA	\$304,050	\$241,368	\$0.00	\$241,368
573704	Hoffmann		468,241.00	\$86,036.53	382,204.47
569148	Tregeagle		\$156,291	\$13,696.81	\$142,594
569149	Schweizer		169,063.00	\$15,029.07	154,033.93
569150	Hernandez		342,431.00	34,033.83	308,397.17
569151	Fernandez		138,986.00	\$4,170.77	134,815.23
569152	Devel-Jackson		139,901.00	\$2,164.44	137,736.56
	Total			\$248,111.84	\$2,904,366

Team Leads Presentations

Objective 1. Characterization of mother plant physiological responses to the environment.

Characterization of mother plant physiological responses to the environment –shoot

- <u>Current Activities</u>: CO₂ and Light intensity chamber set up (Sam), Transplant rooting capacity experiment completion (Sam). Arrival of new PhD student (Moein).
- <u>Upcoming research activities</u>: Execution of CO₂ and Light experiment, set up and experiment for light distribution, light quality, and photoperiod.

Sam Humphrey

Ricardo Hernandez

Moein Moosavi-Nezhd

Characterization of mother plant physiological responses to the environment – root zone

- <u>Current Activities</u>: Completed initial substrate formulations and first round of characterization. Container modeling (substrate physical properties) is ongoing.
- <u>Next Immediate Steps</u>: Coordinating with Hernandez, Kubota, and Boldt on selecting a "common" substrate for all lab groups to use in testing and trials. Mixing/preparing that product and distribution to lab groups.
- <u>Next Fiscal Year</u>: Complete substrate characterization and container modeling. Conduct and complete strawberry plant growth trials in experimental mixes, beyond the one used for/across all groups.

Brian Jackson

Brandan Shur

JSDA A

Agricultural Research Service

Current activities:

1. Evaluate $NO_3^{-}:NH_4^+$ on runner production and daughte r plant quantity and quality (July – Nov 2022)

1.2a Nutrient optimization of mother plants (USDA-ARS)

2. Test viability of multiple hydroponics setups for future nutrient studies (Aug – Oct 2022)

Upcoming research activities:

- Repeat NO₃⁻:NH₄⁺ study in new indoor space (fall/winter 2022-2023)
- 2. Impact of EC on mother plant and runner production (greenhouse; winter/spring 2023)

Current personnel:

Jennifer Boldt, Pl Erin Yafuso, Post-doc

Transplant day! (Mona-Lisa Banks, technician)

Objective 2. Development of environmental protocols for transplant establishment, conditioning and longterm storage.

Plant Physiology

Objective 2 Environmental protocols for transplant establishment, conditioning (runnering/flowering), and long-term storage

UPDATE

Chieri Kubota (Ohio State Univ.) Edward Durner (Rutgers Univ.) Celina Gomez (Purdue Univ.) Mark Hoffman (NC State Univ.)

Obj. 2 Environmental protocols for transplant establishment, conditioning (runnering/flowering), and long-term storage Team members:

Chieri Kubota The Ohio State University Edward Durner Rutgers University Celina Gomez Purdue University Mark Hoffmann NC State University

Stage	Objective	Research	Outcome				
OBJ. 2 Environmental protocols for transplant establishment, conditioning (runnering/flowering), and long-term storage.							
Propagation Transplants	OBJ. 2.1 Environ. strategies to condition Propagation transplants for optim- ized propagation behavior.	Conditioning Treatments Chilling Nitrogen Rates	Outcome: Plant material with multiple microscopic crowns with high runnering capacity				
Plug Plants	OBJ. 2.2 Environ. strategies to condition plug plants for a predetermined flowering behavior.	Conditioning Treatments	Conditioned transplants to have early and higher fruit production yield				
Unrooted and rooted daughter plants	OBJ. 2.3 Environ. recipes to maintain unrooted + rooted daughter plant in storage with minimum impact on plant quality	Low temp. and storage days, Low temp. + light combin- ations to reach photo- synthesis = respiration compensation point and long storage time	High quality plant material (plug plant) coming from storage for either fruit or daughter plant production				

Obj. 2.1 – Conditioning plants for propagation, update

- Bare root plants were received for three cultivars "Albion, Monterey and Fronteras" in November 2021
- Greenhouse was set up for runnering
- A grad student (Pooja Tripathi) joined in January 2022
- The first experiment began in April 2022 using two cultivars (Albion and Fronteras) to test artificial chilling to improve the vigor of propagation transplants.

Obj. 2.2 – Conditioning plants for fruit production, update

- Bare root plants were received for three cultivars "Albion, Chandler and Fronteras" in November 2021.
 - Fronteras did not establish well in the greenhouse
 - 'Ruby June' was added as alternative material
- Started working towards "protocols development" to develop high quality plug/tray plants and their flower mapping data
 - Photoperiodic lighting quality (red, far-red, and blue light)
 - Nitrogen pulse treatment
 - Correlating flower mapping data with flower and fruit production in greenhouse, high tunnel, and open field
- Mark Hoffmann and Michael Palmer (PhD Student) are joining this Objective: Impact of chilling on floral development and plant performance

Obj. 2.3 – Low-temperature storage of unrooted or rooted runner tips, update

- Project site moved to Purdue University
 - Experimental design will be updated based on the facility availability at Purdue
- Project starting date will be January, 2023
- Graduate student joined the lab in August 2022
- Need to arrange plants (and select cultivars) this fall
- Seeking collaborations with commercial nurseries for getting their runner tips or plugs to use in storage experiments

Celina Gómez Purdue University

Plant Genetics

Objective 3.

Development of a genetic matrix, based on phenotypic responses to environmental treatments.

Genetics Team

USDA-SCRI Project: Development and Integration of Next-Generation Propagation Strategies to Increase the Resilience of the US Strawberry Supply Chain

https://strawberries-pip.cals.ncsu.edu/

Team Members

Dr. Zhongchi Liu Professor

Ms. Christina Ippoliti PhD student

Advisors to the team

Dr. Gina Fernandez NCSU

> Dr. Courtney Weber Cornell
Project summary

Done DNA extraction and <u>W</u> hole <u>G</u> enome <u>S</u> equencing		On-going	Next
		Variant Calling	Correlate variants with phenotype
<u>Short-</u> Day	<u>Day</u> neutral	Genes known to regulate runnering and flowering In <i>Fragaria vesca</i>	Develop a list of phenotypes
Brilliance	Albion	• CO	 Runner proliferatively or net
 Camarosa 	Cabrillo	• FI (FI1, FI2, FI3)	nol Lowering time
Chandler	 Monterey 	• 5001	 Flowering time Viger (number of leaves?)
Fronteras	• Moxie	• GA20ox4	 Refined day length
Radiance	Portola	• <i>RGA1</i>	 Chilling hour requirement?
Ruby June	• Finn	• DAM	

Industry Economics

Determine expected economic costs/returns to industry of adopting developed techniques, and estimate the economic impact of adoption on the US strawberry supply chain.

Economics Team

Rachael Goodhue

Daniel Tregeagle

Completed and Ongoing

- Review literature on strawberry and specialty crop supply chains
- Description of current "conventional" supply chain
- Identify nursery business characteristics
- Develop framework for CA strawberry nursery production cost

Planned for 2022-23

- Design of summer 2023 interview / focus group discussion
- Seek and receive IRB approval
- Conduct interviews / focus groups to quantify supply chain and production costs

Economics is about understanding the aggregate outcomes of tradeoffs made by individuals

- More "vigorous" plants vs. higher production costs? [quality]
- Do invest in building tabletops now, later, or never? [time]
- Should we produce more fresh bare root or frigo plants? [form]

Quantifying the production costs and supply chain allows us to analyze these (and other) tradeoffs

Plant Performance

Objective 5.

Translation and integration of new propagation systems with industry partners.

<u>Objective 5:</u> Translation and integration of new propagation systems with industry partners

5.1: Validation and scale-up of PIP and Greenhouse Protocols5.2: Development and of field-based propagation protocols5.3: Nationwide transplant evaluation

PIP-CAP: Objective 5

Gerald Holmes Director, California Strawberry Center

Shinsuke Agehara Assistant Professor, UF

Courtney Weber Assoc. Professor Cornell University

) Cornell University

Oleg Daugovich Field Advisor, Ventura Co.

Giuliano Galdi Field Advisor, Siskiyou Co.

Mark Hoffmann Small Fruits Extension Specialist, NCSU

Gina Fernandez Distinguished Professor NCSU

NC STATE UNIVERSITY

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Students and Staff

Emma Volk

Research Assistant MS Student Greenhouse Nursery Operations

NC STATE UNIVERSITY

Michael Palmer PhD-Student Transplant Evaluation and Optimization

NC STATE UNIVERSITY

Samantha Simard MS-Student Transplant Evaluation

2022-2023: Trails

Evaluate optimal planting date for rooted tips

NC STATE UNIVERSITY

Evaluate field performance of PIP rooted tips Develop optimal chilling protocols for tray plant production (in collaboration with Kubota & Durner)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Evaluate optimal row-cover use in field nurseries

Technology Transfer

Objective 6.

Development of extension and outreach services and products for industry and public stakeholders.

Extension & Outreach Team Members

- Peter Nitzsche
 - Agriculture & Natural Resources Agent, Rutgers NJAES Cooperative Extension of Morris County
- Mark Hoffmann
 - Small Fruits Extension Specialist, North Carolina State Extension, NCSU.
- Oleg Daugovich
 - Strawberry Vegetable Crop Advisor, Cooperative Extension Ventura County, UC ANR
- Shinsuke Agehara
 - Assistant Professor of Horticulture, Institute of Food & Agricultural Sciences, UF
- Jayesh Samtani
 - Small Fruit Extension Specialist, Virginia Agriculture Experiment Station, VT
- Giuliano Galdi

- Agronomy and Crops Advisor, Cooperative Extension Siskiyou County, UC ANR

Current Activities Year Plan

Website Development

(<u>https://strawberries-</u> pip.cals.ncsu.edu/)

STRAWBERRY PIP-CAP SCRI

Next Fiscal

- Blog / Newsletter Development
- Video on CA Strawberry Nursery Industry
- Work with other teams to document their research
- Student exchange

Stakeholder Visits California Jun 26 – Jul 1, 2022

Students & Staff

Emma Volk, Rocco Schiavone, Sam Humphrey, Yue Shan, Jung Hoon Han, Christina Ippoliti

• Pls

Mark Hoffmann, Ricardo Hernández, Peter Nitzsche, Zhongchi Liu, Heidi Schweizer

Planning/Management Lizeth Vigil

Who did we visit?

- California nursery system
- California strawberry production system
- Issues and expectations

NC STATE UNIVERSITYCA NURSERY Systems: Summer before planting

NC STATE UNIVERSITY CA Nursery Systems: June after planting

NC STATE UNIVERSITY CA Nursery Systems: Spring-Summer after planting

NC STATE UNIVERSITY CA Nursery Systems: Spring-Summer after planting

NC STATE UNIVERSITY CA Nursery Systems: Shortly before harvest

CA Nursery Systems: Harvest (Sep-Nov)

Video Clip

NC STATE UNIVERSITY CA Nursery Systems: Shipping/Storing (Sep-May)

CA Production

2022 California fresh volume of 5,708,083 trays is below the projected total of 6,421,381 trays for this week.

2022 volume projections are calculated using this year's acreage estimates multiplied by the 4-year average yields per acre, per district.

CA Production

Сгор	Area	2022 Acreage	% change to 2021
Fall Planting Winter, Spring, Summer Production	Oxnard/Santa Maria Watsonville/Salinas	30,383	+6.4%
Summer Planting Fall – Winter Production	Oxnard/Santa Maria Watsonville/Salinas	7,643	-15.1%
Mexico	Central Mexico Baja	40,900	+27%
Florida	Hillsborough Co.	12,169	+1.4%

- Fundamental knowledge on plant physiology and technology transfer two key expectations
- CA industry tightly connected to Mexico industry
- Key definitions are lacking (e.g. high quality plant)

Thank You

<u>mark.hoffmann@ncsu.edu</u> <u>ricardo_hernandez@ncsu.edu</u>

EST. 1870

Effect of artificial chilling treatment on vegetative growth and runnering of 'Albion' and 'Fronteras' strawberry propagation transplants

Pooja Tripathi PhD student Kubota Lab Department of Horticulture and Crop Science

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES **Objective 2:** Development of environmental protocols for transplant establishment, conditioning and long-term storage.

Specific objective 2.1:

Environmental strategies to condition young plants for optimized propagation behavior.

Objective:

To examine the effects of various levels of artificial chilling treatments on vegetative growth and runnering capacity of two strawberry cultivars.

Hypothesis:

- Chilling treatment will promote vegetative growth, runnering and increase the number of daughter plants.
- Increase in chilling hours will make the plants more vegetative.

Chilling requirements of strawberry cultivars in conventional propagation.

- For Albion, 10-18 days of supplemental chilling is recommended, depending on how much in field chill the plants got. If the plants get 600 hours of in-field chill, 10 days of supplemental chilling is recommended before transplanting.
- Likewise, for Fronteras, a short-day cultivar, 4-7 days supplemental chill with at least 250 hours in-field chill is recommended prior to transplanting. (Source: I.A Rainwater, Strawberry Licensing Field Representative, UC Davis, personal communication)

Table 1: Calculation of chilling treatments

71

Cultivars	Low end of minimum	Low end of minimum + 50% increase
Albion	600+240 = 840 h	840+420 = 1260 h
Fronteras	250+96 = 346 h	346+173 = 519 h

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Treatments

Table 2: Chilling treatments for Albion

Factors	Levels	Values
Chilling	3	0 h, 800 h, 1200 h

Table 3: Chilling treatments for Fronteras

Factors	Levels	Values
Chilling	3	0 h, 350 h, 500 h
Methodolo

Harvestin g daughter plants

Note: Photosyn photoperiod du

Date of transplant: 8/11/2022

Data collection

Weekly

- Number of runners
- Length of runners
- Number of daughter plants
- Number of flower trusses removed

Bi-Weekly

- Petiole length of mother plant
- Number of leaves of mother plant
- Number of crowns in mother plant

Two times measurement of leaf area index and photosynthesis of mother and daughter plants

End of the experiment:

- Crown diameter of daughter plants
- Weight and number of daughter plants (FW and DW) per mother plant
- Weight of the stolon and mother plant
- Rooting capacity of daughter plants

Before transplanting

Plant architectural analysis (microscopic flower and runner mapping) of mother plants

Thank you!

Acknowledgement

Advisor: Dr. Kubota Kubota lab members Mark Kroggel Jason Hollick John Ertle Jeffrey Bates

USDA NIFA Specialty Crop Research Initiative (SCRI)

USDA National Institute of Food and Agriculture

This presentation is supported by Specialty Crop Research Initiative [grant no. 2021-51181-35857] from the USDA National Institute of Food and Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.'

Rooting Efficacy of Different Size Strawberry (*Fragaria ananassa*) Tips in a Controlled Environment Propagation System

Samson Humphrey, Ricardo Hernández, & Mark Hoffmann

North Carolina State University Department of Horticulture SCRI PIP-CAP Annual Meeting, 2022

Three areas of optimization:

Three areas of optimization:

Mothers produce daughters (Photo courtesy: Xiaonan Shi)

Three areas of optimization:

Mothers produce daughters (Photo courtesy: Xiaonan Shi)

Daughters root and grow

*Shi, et al. 2021: Timing of Stolon Removal Alters Daughter Plant Production and Quality in the Ever-bearing Strawberry 'Albion', HortScience **Xu & Hernandez 2021: The Effect of Light Intensity on Vegetative Propagation Efficacy, Growth, and Morphology of "Albion" Strawberry Plants in a Precision Indoor Propagation System, MDPI Applied Sciences

*Shi, et al. 2021: Timing of Stolon Removal Alters Daughter Plant Production and Quality in the Ever-bearing Strawberry 'Albion', HortScience **Xu & Hernandez 2021: The Effect of Light Intensity on Vegetative Propagation Efficacy, Growth, and Morphology of "Albion" Strawberry Plants in a Precision Indoor Propagation System, MDPI Applied Sciences

Objectives:

- Determine if daughter plant size affects rooting success
- Determine rooting differences between daughter plant sizes

Hypothesis:

Daughter plant size will affect root development but will not rooting success rate

- Crown diameter
- Root number
- Leaf number
- Fresh mass
- Position on the stolon
- Leaf size (area or length)
- Stolon diameter
- "Greenness"

Crown diameter

- Root number
- Leaf number
- Fresh mass
- Position on the stolon
- Leaf size (area or length)
- Stolon diameter
- "Greenness"

- Crown diameter
- Root number
- Leaf number
- Fresh mass
- Position on the stolon
- Leaf size (area or length)
- Stolon diameter
- "Greenness"

Very Small (VSM)

Small (SM)

Medium (M)

Large (L)

- Cultivar: Monterey
- Randomized complete block design
- n = 12, where n = 1 plant

Variable	Value
Duration	28 days
Temperature	24.2 ± 1.3 °C
Relative Humidity	99.3±2.2%, lowered to 91.6±3.5%
Vapor Pressure Deficit	0.02±0.06 kPa, raised to 0.24±0.09 kPa
Photoperiod	18h
Light intensity (PPFD)	80.3±0.9 μmol m ⁻² s ⁻¹ (30B:70R)
CO2 concentration	470±73
рН	5.8
EC	2.1
Nutrients	Custom nutrient solution

https://docs.google.com/spreadsheets/d/1A0JTtL bf3jGzdnU8Ry34rKbMjaoYEe5VcsEpXJxoKAI/edit? usp=sharing

	Growing Conditions ☆ 団 ⊘ File Edit View Insert Format Data Tools Extensions Help Last edit was seconds ago						
▶ 여름 〒 100% ▼ \$ % .000 123▼ Lato → 10 ▼ B Z 용 <u>A</u> À 田 田 → 冨・土・├・ ♡▼							
D26	D26 - fx						
	A	В	С	D	E		
1			Young plants	Propagative	nother plants		
2	Parameter	Units	Humphrey tip size experiment, Monterey plug plants	Humphrey stock plants, Monterey and Fronteras	Humphrey CO2 experi Monterey and Fronte		
3	Light intensity (canopy level)	PPF, µmol mol-1 s-1	80	400	200 or 400		
4	Photoperiod	hours	18	18	To be decided		
5	Light spectrum	RGB %	30B:70R LEDs	8B:15G:77R (Arize Lynk2 PKR)	25B:38G:37R (Arize Lynk2 B		
6	Temperature (air)	degrees C (day/night)	25 setpoint (24.2 ± 1.3)	25/25	To be decided		
7	Temperature (liquid culture)	degrees C	N/A	N/A	N/A		
8	Relative Humidity	%	99%, lowered to 90% on day 20	~50%	To be decided		
9	Carbon dioxide	µmol mol-1 (=ppm)	400 setpoint (470 ± 73)	400	400 or 700 or 1200		
10	Air velocity	m s-1	<0.1	0.5 to 1	To be decided		
11	Watering	L	As needed, watered over top (depend	As needed to maintain soil moisture	As needed to maintain soil me		
12	pН	pH	5.8	5.5 to 6	5.5 to 6		
13	EC	Sm-1	2.1	<1	<1		
14	Nutrition (solid media)	mol kg-1 (dry)	N/A	N/A	N/A		
15	Nutrition (liquid culture)	mmol L-1	Custom mix based on tomato	Custom mix based on tomato for the f	To be decided		
16	Substrate type		70:30 coconut coir:perlite by volume	Sungro MetroMix	To be decided		
17	Container volume	L	~76 mL	~3L	To be decided		
18	Room/chamber specifications	Floor area and model	2.7x1.2 m custom chamber	2.7x1.2 m custom chamber	1.3x2.8 m chamber		
19	Barrier beneath lamps		>3 mm thick transparent acrylic	None	None		
20	Airflow	up, down, or horizontal	Horizontal	Down	To be decided		
21	Notes		NO misting (unlike common strawberry rooting systems), instead we maintained very high humidity; duration of this experiment was 28 days		Treatments for light intensity CO2		
22							

- Cultivar: Monterey
- Randomized complete block design
- n = 12, where n = 1 plant

Variable	
Duration	28 days
Temperature	24.2 ± 1.3 °C
Relative Humidity	99.3±2.2%, lowered to 91.6±3.5%
Vapor Pressure Deficit	0.02±0.06 kPa, raised to 0.24±0.09 kPa
Photoperiod	18h
Light intensity (PPFD)	80.3±0.9 μmol m ⁻² s ⁻¹ (30B:70R)
CO2 concentration	470±73
рН	5.8
	2.1
Nutrients	Custom nutrient solution

- Crown diameter
- Visual root assessment
- Shoot and root fresh and dry mass
- Water and nitrogen consumption
- Number of leaves
- Longest leaf length
- Plant height
- SPAD chlorophyll content
- Leaf area
- Gas exchange and transpiration

- Crown diameter
- Visual root assessment
- Shoot and root fresh and dry mass
- Water and nitrogen consumption
- Number of leaves
- Longest leaf length
- Plant height
- SPAD chlorophyll content
- Leaf area
- Gas exchange and transpiration

Rooting Success Rate (%)

No roots developed
 Roots developed

Rooting Success Rate (%) No roots developed Roots developed

Rooting Success Rate (%)

No roots developedRoots developed

Hypothesis: Initial size will not affect rooting success

Rooting Success Rate (%)

No roots developed
 Roots developed

Hypothesis: Initial size will not affect rooting success

Finding #1: We can root all sizes of daughter plants in controlled environments

Results: Growth Differences

Results: Growth Differences

Т

Root Rating (1-3)

Results: Growth Differences

Т

Root Rating (1-3)

Finding #2: Larger size before rooting is correlated with larger size after rooting

Results: Relative Growth Rate

Results: Relative Growth Rate
NC STATE UNIVERSITY

(final – initial)

initial

100

NC STATE UNIVERSITY

(final – initial)

initial

100

Results: Relative Growth Rate

NC STATE UNIVERSITY

(final – initial)

initial

100

Results: Relative Growth Rate

Finding #3: Growth rate varies depending on initial plant size

Main Conclusions

#1: We can root all sizes of daughter plants#2: Final size is correlated with initial size#3: We can predict growth rate based on initial size

- Expected results:
 - Potentially similar plant growth in the field, despite plug plant size (Hokanson, 2002; Bish, 2000)

- Expected results:
 - Potentially similar plant growth in the field, despite plug plant size (Hokanson, 2002; Bish, 2000)
 - Early yield: Larger plug plants may have greater early yield (Bish, 1997; Takeda, 2001; Rice, 1986) however, this may be cultivar dependent (Rice, 1986).

- Expected results:
 - Potentially similar plant growth in the field, despite plug plant size (Hokanson, 2002; Bish, 2000)
 - Early yield: Larger plug plants may have greater early yield (Bish, 1997; Takeda, 2001; Rice, 1986) however, this may be cultivar dependent (Rice, 1986).
 - Late yield: Unaffected by size, regardless of cultivar (Rice, 1986; Bish, 2002)

- Expected results:
 - Potentially similar plant growth in the field, despite plug plant size (Hokanson, 2002; Bish, 2000)
 - Early yield: Larger plug plants may have greater early yield (Bish, 1997; Takeda, 2001; Rice, 1986) however, this may be cultivar dependent (Rice, 1986).
 - Late yield: Unaffected by size, regardless of cultivar (Rice, 1986; Bish, 2002)

Can we use small daughters to grow the same quality of fruiting plants?

Acknowledgements

Dr. Ricardo Hernández Dr. Mark Hoffmann Cristian Collado Xiaonan Shi Dr. Eshwar Ravishankar Partin Thompson Jerry Yu Emma Volk This project was funded by the USDA-NIFA specialty crop research initiative, award nr: 2021-51181-35857

United States Department of Agriculture National Institute of Food and Agriculture

USDA-SCRI Project: Development and Integration of Next-Generation Propagation Strategies to Increase the Resilience of the US Strawberry Supply Chain

https://strawberries-pip.cals.ncsu.edu/

Progress in identifying DNA variants associated with runnering and flowering traits in strawberries

Xi Luo, Ph. D.

Genetics Team @ University of Maryland

PI: Dr. Zhongchi Liu

8.24.2022

Cultivated strawberries ($F. \times ananassa$) are propagated by runners

Guo et al. 2021, Current Opinions in Plant Biology

Photo credit: Ruud Morijn

Genetics is powerful!

srl YW

One nucleotide change = runner or not

Caruana et al. 2018

The genes regulate runner and flowering traits in *F. vesca* could be applied to cultivated strawberries

- GA20ox4
- RGA1
- CO
- FT (FT1, FT2, FT3)
- *SOC1*
- *TFL1*
- DAM

Edger et al. 2019

Hypothesis

- 1. Genetic variations in the key genes in cultivated strawberries may be correlated with their flowering or runnering phenotypic response to the environment
- 2. By identifying those correlation, propagation capacities of cultivated strawberries could be predicted

The 12 cultivars included in the analysis

June bearing (seasonal flowering)

- Brilliance
- Camarosa
- Chandler
- Fronteras
- Radiance
- Ruby June

Everbearing (perpetual flowering)

- Albion
- Cabrillo
- Monterey
- Moxie
- Portola
- Finn

Analysis pipeline

Genomic DNA isolation and <u>Whole Genome S</u>equencing

Alignment and Variant calling

Identifying DNA Variants (SNPs and Indels)

Collecting Phenotypic data (traits: runner, flower, chilling hours, etc.) Identifying association between high impact DNA Variants and specific phenotypes

Developing molecular markers for breeding and phenotype prediction

Analysis pipeline

Genomic DNA isolation and <u>Whole Genome S</u>equencing

Alignment and Variant calling

Identifying DNA Variants (SNPs and Indels)

Collecting Phenotypic data (traits: runner, flower, chilling hours, etc.) Identifying association between high impact DNA Variants and specific phenotypes

Developing molecular markers for breeding and phenotype prediction

Whole genome sequencing data summary

	Reads	Bases	
	(Million)	(Billion)	Q30 bases (%)
Albion	246.45	36.81	94.17%
Brilliance	205.10	30.62	93.87%
Cabrillo	222.13	33.14	93.75%
Camarosa	214.25	32.00	93.42%
Chandler	214.03	31.94	93.44%
Finn	225.94	33.72	93.61%
Fronteras	233.60	34.89	93.61%
Monterey	224.13	33.48	93.62%
Moxie	204.68	30.56	94.10%
Portola	210.50	31.41	93.44%
Radiance	223.81	33.44	94.13%
Ruby June	214.21	32.01	93.94%

- ~ 35 billion bases each cultivar
- High quality: Q30 bases >93%
- 145X coverage on average

Note: Q30 means the sequence error rate is 1/1000 bases

Aligning sequences to reference genome

Sequencing reads are disorganized

Sequencing reads are matched or "aligned" to reference genome

Reference genome

Synthetic reference genome

Our reference genome composed of all of our genes of interest from the known *Fragaria vesca* genome.

Variant calling: discovering variants in genes from different cultivars

•••	IGV		
GCF_000009065.1	NC_003143.1 ○ IC_003143.1:1,272,532-1,272,586 Go	+	
Coordinates		-	
Vertilecete			
Coverage			1
Reads alignment			An example: 10 reads coverage
→ Ref. Sequence	A A A A G C A A T A T G A T C A A G C G A T C A C T G T T T T T C A G A G T T T T G T G A A A C A G T A T C K K Q Y D Q A I T V F Q S F V K Q Y ANY MOUS	P	
	A T-to-C SNP with 100% variant allele frequency		

Calculate variant allele frequency

Variant allele frequency:

 $reads\ harboring\ a\ specific\ variant\ at\ the\ locus$

all reads aligned to the locus

An example of 4 variant types at one locus in four cultivars.

Future directions:

- 1.Fully develop a list of phenotypes
- Runner proliferatively or not
- Flowering time
- *Vigor
- *Refined day length
- Chilling hour requirement

2. Identify association between high impact DNA variants and specific phenotypes

Acknowledgements

Liu lab
Dr. Zhongchi Liu
Dr. Muzi Li
Ms. Christina Ippoliti

Hanna Zeng from Lassen Canyon Nursery, Inc